

cedars-sinai.org

Most hospitals have set spaces & fall somewhere on the spectrum

• Where are you on the spectrum?

Even when you have a lot of space, is it ever enough?

See... It worked out... All the equipment fits...

Are you ready to play hide & seek?

Now let's find Teledoc... your time starts now...

Did you notice...

Disorderly due to space constraint

Locating equipment: Loss of time & efficiency

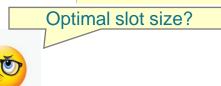
Makeshift charging stations

Tripping hazard: Disorganized cords on ground

We completed 2 space planning projects...

- Equipment storage
 - Review some of the factors considered
 - Cover approach taken to complete the project
- Supply storage space requirements for an expansion project
 - Cover project approach

Equipment storage: Factors to be considered for optimal equipment layout design*


- Interlocking equipment
 - Storing together to reduce space requirement
- Optimizing layout by grouping of equipment by type:
 - Simplifies retrieval, put-away, and inventory counts
 - Places equipment requiring charge near outlets
 - Reduces cord-related chaos & hazards
- Personal fatigue and delay, PF&D

ars Sinai

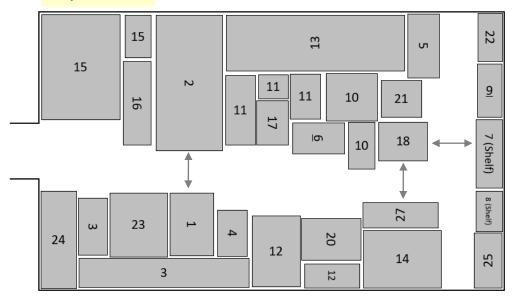
- Plan access to every equipment type group to prevent:
 - (1) Unnecessary movement & handling of equipment & (2) adding to employee fatigue

Example of interlocking equipment

First project

You will also need quantity & dimensional information

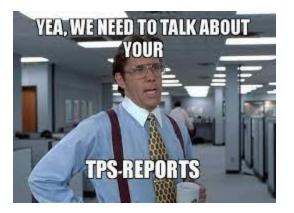
No. Equipment	proximity	storage qty		symbol	slot length	slot width
1 Crash cart	close	2	39 x27	1	0.81	1.13
2 Philips cardiac Monitors	close	8	29 x 29		1.21	2.42
3 Capsuletech Monitors	close	8	25 x 25	-	1.04	2.08
4 GE MAC VU360 ECG	close	2	26 x 20		0.54	0.83
5 Sonosite SII Ultrasound System	close	2	27 x 27		0.56	1.13
6 Sonosite X-Porte Ultrasound System	close	2	23 x 27		0.96	0.56
7 Transport Monitor (Zoll Defib)	close	23	23 x 10		0.48	1.25
8 Lucas CPR System	close	5	23 x 12		0.48	0.75
9 Level 1 Rapid Infusion	close	2	21 x 23		0.44	0.96
10 Verathon Glidescope	close	3	41 x 23		1.71	0.96
11 BladderScanner	close	6	20 x 27		1.25	1.13
12 Consent iPad	close	11	21 x 21		1.29	1.31
13 Martti iPad	close	18	24 x 24		2.21	1.50
14 Privacy Screen	close	8	25 x 17		1.04	1.42
15 IV Pole	close	17	23 x 23		2.30	1.44
16 Karl Storz Endoscope CMAC	distance ok	3	24 x 24		0.50	1.50
17 Teladoc Robot	distance ok	2	27 x 19		0.56	0.79
18 Infant Scale	distance ok	2	33 x 22	<u> </u>	0.69	0.92
19 Mobile Phone Charging Tower (new)	distance ok	5	17 x 17		0.35	1.77
20 YAG Laser	distance ok	2	26 x 36	20	1.08	0.75
21 Thermogard	distance ok	2	31 x 18	_	0.65	0.75
22 Cast Cutter	distance ok	2	21 x 21		0.44	0.88
23 Giraffe Carestation	distance ok	2	28 x 51		1.17	1.06
24 Mobile Surgical Light	distance ok	3	28 x 30		1.75	0.63
25 Acuvein vein finder	distance ok	2	24 x 24	\circ	0.50	1.00
26 Crib	distance ok	2	35 x 66		1.46	1.38
27 Mobile Phone Charging Tower (old)	distance ok	3	22 x 22		1.38	0.46



First project

The final output is an efficient layout...

Optimized



- ✓ All equipment easily accessible
- ✓ Critical equipment in 1 close by room
- ✓ Equipment requiring power/charging placed near outlets

Accounted for interlocking for equipment numbers 12, 13 & 15

Great! But what TPS?

Total Product Stock you'll need to provide quality patient care

- Are you holding too much stock?
- Maybe not enough?
- Is the space really not enough, or are inventory levels off?

Methodology for supply storage space planning...

- Recorded measurement of spaces & storage locations
- Collected & validated inbound, on-hand & outbound/usage data, including dollars & cubic volume
 - This is where you'll need to store and build item dimensions data sets
 - If possible, correct for nested products
- Assigned ABC item classifications to your products
- Collected & leveraged current patient stats to evaluate current on-hand, plus determine future levels
- Designed and ran usage model; ran sensitivities on patient growth scenarios
- Calculated sq. ft. requirements for product storage, staging & put-away

Determine your inventory landscape & days on hand...

Leveraged current & anticipated future patient stats to:

- 1. Back into on-hand levels required in future state
 - Leveraged to calculate sq. ft. and racking needs
- 2. Evaluate whether current on-hand levels are right-sized

Current

Inbound: Weekly Average

On-hand Levels:

Calculate Current

					1	/

∟Units: ~## K

∟<u>Cubic feet: ~###</u>

∟Dollars: ~\$##K

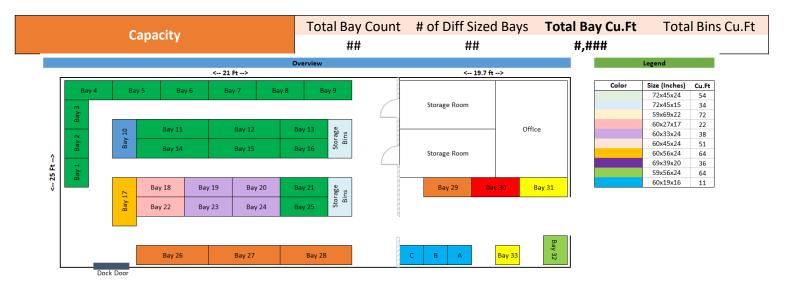
Metric	ft³	Units	Dollars
Total	###	#,###	\$\$\$
∟ C-lockers, current, ## count, actual	###	###	\$\$
∟ Carts (IV & Isolation), ## count, capacity	###	###	\$\$
∟ Storage Areas 1 & 2, capacity	###	###	\$\$
∟ Clean Utility Rooms 1 & 2, capacity	###	###	\$\$

Outbound

Anticipated Future

Anticipated need of ~#,### ft3 / week

Second project


- \hdown This should equate to y days of supply
- \hdown Based on a x% increase in patient census
- ${\mbox{\sc L}}$ Patient census defined as seen + lwbs

- L Avg daily patients seen: ∼## +/- X patients
- L Avg daily who left without being seen: ∼## +/- X patients

Detailed work behind calculating current capacity

Example of detailed capacity layouts compiled

